Underdetermination, Logic, Mathematics, and Science

by

Pedro M. Rosario Barbosa

I. The Putnam-Quine Theses

One of the most controversial aspects of philosophy today is what has to do with the problem of underdetermination in science. Most people steak of the Duhem-Quine thesis as one of its foundations. I would like to mention the fact that there is no such thing as the Duhem-Quine Thesis. As famous as this “thesis” may be, Pierre Duhem and W. V. O. Quine really stated two very different things concerning science and how its theories affect other unrelated branches of science.

Donald Gillies has made an excellent exposition about the similarities and differences concerning the Duhem thesis and the Quine thesis. Pierre Duhem said that in the case of Physics, an experiment can never condemn a hypothesis but a whole theoretical group. That what is really put to the test is not merely a hypothesis, but a whole bunch of hypotheses, laws, and theories that the tested hypothesis supposes (Duhem 183-188; Gillies 98-99). Therefore, there is no such thing as “crucial experiments” in Physics to determine if a hypothesis is true or not. It is perfectly possible that if an experiment “disproves” a hypothesis, really the problem is not the hypothesis, but another theory, law or hypothesis, or an entire group of them within the framework of theoretical Physics (Duhem 188-190; Gillies 101). However, this underdetermination of Physics does not extend to other branches such as Medicine or Physiology. For example, if a philologist wants to know if a nerve or a muscle has to do with the movement of the arm, all the physiologist has to do is to affect the muscle or nerve in question and will confirm if indeed it is the case. But Physics is completely different, because all physical events are understood within a theoretical framework. For example, in the area of optics, the way we explain what we observe depends not merely in what we see, but also on our theories of what light is, on the way lens work, theories about how light behaves as wave, etc. If the hypothesis itself, but all or some elements of the theoretical body supposed by the hypothesis (Duhem 180-183). We have to add the fact that for Pierre Duhem, revision in Physics does not extend at all to the area of logic and mathematics. In fact, he was so opposed to the idea, he mistakenly rejected the General Theory of Relativity and its use of Non-Euclidean Geometry, because it goes against our intuition that space is Euclidean (Curd and Cover 377; Gillies 105).

Quine holds a very different point of view. In his famous essay “Two Dogmas of Empiricism”, he denies the distinction between analytic and synthetic judgments made by Rudolf Carnap and other logical positivists of his time. Since there is no actual distinction between formal sciences and natural sciences, he says that all of the fields of natural science and pure mathematics are convenient fictions to give meaning to experience. For Quine, all of the theoretical, logical and
mathematical are there to give meaning to what we perceive through our senses. Therefore, on the basis of recalcitrant experience, we can be able, not only to revise scientific theories, but also fields such as logic and mathematics (Quine 1953, 42-43).

We can see here that Quine’s underdetermination of science and other fields is far stronger than Duhem’s. It is this Quine’s underdetermination doctrine what has been called mistakenly as the “Duhem-Quine Thesis”.

However, this Quinean thesis is related to another one, widely known in the field of Philosophy of Mathematics and promoted by Hilary Putnam, which states that logic and mathematics can be revised by experience. We still discuss here, not one, but two Quine-Putnam Theses:

- **First Quine-Putnam Thesis**: Mathematics and logic can be revised in light of recalcitrant experience and changes in scientific theories.
- **Second Quine-Putnam Thesis**: Mathematics as such exists by the fact that it is indispensable to science. This is the indispensability argument.

II. First Quine-Putnam Thesis

Logic and mathematics are both *a priori* analytic sciences, and as such, they always seem to not be related to sensible experience. However, the prejudice that somehow we obtain knowledge of mathematics through sensible experience has gained much support from philosophers all over the world, even though such a point of view, when analyzed, cannot give an adequate semantical, epistemological and ontological account of mathematics. The empiricist and physicalist ways of thinking presuppose no ontological existence of abstract relations and mathematical objects. Instead they imply that these are completely products of human imagination. This leads them to the First Quine-Putnam Thesis, that somehow mathematics and logic can be revised in light of recalcitrant experience.

One of the clearest examples of what Putnam tried to show is the case of Quantum Logic (Putnam 174, 248). Quine in “Two Dogmas” also alludes to Birkhoff and von Neumann, and their development of Quantum Logic as a possible instance of revision of logic using empirical basis (Quine 1953, 43). These are cases in which, supposedly, formal classic logic does not apply, and one of these seem to be quantum mechanics. Curd and Cover give this example that concerns the principle of the excluded middle. For example, both of these formulas are tautologically equivalent, one can be derived from the other:

1. \(p \land (q_1 \lor q_2) \)
2. \((p \land q_1) \lor (p \land q_2) \)

This is true in classic logic, but not so in Quantum Logic. For example, let us take into account the two-slit experiment. Let \(p \) be “The electron is in region \(R \) of the screen”, \(q_1 \) is the proposition “The electron went through slit 1”, and \(q_2 \) is the proposition “The electron went through slit 2”. If the electron goes through slit 1 or 2, we do not see any wave interference pattern formed on the
screen. However, if they go through both slits simultaneously, then we can see the pattern. Therefore, the inference of (1) to (2) would be invalid in Quantum Logic (Curd and Cover 380).

However, one philosopher who refuted this Quine Putnam Thesis was Quine himself in his later book *Philosophy of Logic*. He argues that alternative logics (such as Quantum Logic) do not really revise classic logic. In Quantum Logic, the connectives are not defined in the same way in terms of truth values as in two-valued logic. Hence, connectives such as negation, the conjunction, or implication in classic logic do *not* mean the same thing as in Quantum Logic. This can be an alternative logic alright, but it does not seem to revise classic logic, because the meaning of logical propositions is very different. Quantum Logic would be itself *another* logical system besides classic logic, not its replacement or revision (Quine 1970, 83-84). This position is very distant from the Quine of “Two Dogmas”, in which he contemplates the possibility of revision of logic and mathematics.

All of this is related to the issue of whether there is or there is no *a priori* knowledge. Though Putnam is open to the idea of revisability in logic and mathematics, there can be *a priori* statements that seem not to be revisable. For instance, propositions like “2+2=4” leave no room for doubt at all, but propositions that seem “quasi-empirical”, may be revised, e.g. “Peano arithmetic is 10^{100} consistent.” These “quasi-empirical” statements seem to be revisable if a contradiction is found (Putnam 124-126; Fred 132-134). Putnam seems to equate revisability with empirical experience, and, in his mind, empirical experience somehow implies revision of *a priori* knowledge (Fred 135). However, Bob Hale has pointed out, a prioricity is not incompatible with revisability (Hale 143).

Putnam, in implicating revisability with empiricism, is not clear on what the nature of his revisability in mathematics and logic is. For example, Platonists and realists in general do not equate a prioricity with infallibility of knowledge. There are mathematical truths that we know infallibly, such as the theorem that the square root of two is an irrational number. But there are also some mathematical conjectures that still remain undecidable, reason by which philosophers like Philip Kitcher has rejected mathematical realism in general (Kitcher 36-48). James R. Brown does not find fallibilism incompatible with Platonism, nor with *a priori* knowledge. Brown says that the fact that we do not know if certain mathematical conjectures are true, does not mean that ontologically speaking they are not true nor false. If we concede that non-discovery implies non-existence, this would be equivalent to say that in 1700 no one knew that there was a planet called Neptune, and therefore Neptune itself did not exist at the time. Though there is *a priori* knowledge, that does not mean that we have infallible *a priori* knowledge of everything. Fallibility in mathematics can stem from three main sources:

1. We could formulate false mathematical or logical conjectures, but not know they are actually false;
2. We could make mistakes that stem from incorrect application of accepted principles (wrong calculations);
3. We could use wrong and naïve concepts (Brown 1999, 18-23).
Underdetermination, Logic, Mathematics, and Science

I would add a fourth aspect of fallibility in the field of mathematics, and that is that we do not know the entire abstract reality that we have not yet discovered. Notice that these sources of fallibilism have nothing to do with experience, but have to do more with the way we deal with the theoretical aspect of mathematical truths as a whole. The same goes with logic.

Some people might state that there were in fact instances that science actually revised mathematics, and that the General Theory of Relativity is one example of these. According to them, Einstein “proved” that space-time is non-Euclidean, while scientists before him thought that space was exclusively Euclidean. For them, General Relativity “proved” that Euclidean Geometry is false. First of all, Non-Euclidean Geometry was first formulated within mathematics, not within science. Lobachevsky, Riemann, and Bolyai developed different geometrical models that denied the “axiom” of the parallels but remained logically consistent, hence conceiving many possible geometrical spaces. Under these new geometries, Euclidean geometry was not refuted, but became one of an infinity of conceivable spaces in mathematics (Brown 1990, 101-102). and indeed this represented a revision in mathematics, but Euclidean Geometry itself was not revised. It only revised the conception of Geometry that admitted Euclidean space as the only one which is valid and possible. Also, notice that while these Non-Euclidean Geometries were developed, empirical criteria played no role in them. Many scientists and mathematicians during the XIX century philosophers rejected all Non-Euclidean Geometry as being non-empirical because space, for them, was Euclidean. For them, simply Non-Euclidean Geometry was entirely false, and had no potential in being applied to science.

Poincaré put an end to this conception of Non-Euclidean Geometry. He was the first one to conceive the logical possibility that Non-Euclidean Geometry could be adopted by scientists with the purpose of simplifying the theory. Poincaré dismissed this possibility because he regarded it as highly improbable. For him, Euclidean Geometry is in itself much simpler than Non-Euclidean Geometry (Poincaré 72-88). It was not until Einstein, inspired by Poincaré, who adopted Non-Euclidean Geometry as a solution for a problem concerning the Theory of Relativity. The dilemma that Einstein confronted was this:

1. If Euclidean Geometry is adopted to solve the problem of Special Relativity, then it complicates the scientific theory at hand. It would be very difficult to relate gravity, light speed, and the consequences of Lorentz Transformations to space-time.

2. If Non-Euclidean Geometry is adopted, though it is more complicated than Euclidean Geometry, it simplifies the scientific theory in great measure, and can give an effective account on how gravity works and its relation to space-time (Einstein 97-126).

As we can see here, Einstein, nor any other scientist, “discovered empirically” that space time is actually Non-Euclidean, nor did it mean a revision in mathematics in any way. The problem here had to do with mathematical models for the theory. Under one model (Euclidean Geometry), the theory would not work as well as in the case of the other one. In this sense, Non-Euclidean Geometry represented a more complicated mathematical model, but it was used to formulate a simpler theory that could account for empirical phenomena (Brown 1990, 103; Brown 1999, 86; Rosado 268). This did not diminish at all the validity of Euclidean Geometry, it just recognized the
validity of Non-Euclidean spaces, and its genuine application to science. In no instance we see that the validity of these models depend on experience, and none of them have been refuted by it.

To sum it up, the First Quine-Putnam Thesis is false. Experience cannot refute any mathematical and logical truth. In fact, all of these logico-mathematical truths to be proven true, they do not need any authority of experience. To prove the irrationality of the square root of two, or to prove the Pythagorean Theorem, we only need to use mathematical notions (which themselves are not found in experience) like numbers, points, lines, figures, and so on, and axioms and theorems, such as the properties of the division and multiplication, or the addition of angles of a triangle in Euclidean Space, among others. Sensible experience, nor any scientific notion (such as mass, electrons, light, and so forth) play any role in these demonstrations. Even if we want to accept deviant logics based on scientific data, such as Quantum Logic, they would not imply a revision of logic. So, mathematics is a field completely independent from science, as logic is its own field also. Mathematics and logic together constitute a priori knowledge, and they are never refuted a posteriori.

I wish to add also, for those who argue the adoption of Quantum Logic on empirical grounds, that in reality Quantum Logic has not served to explain quantum behavior. All it does, apparently, is to shift the mystery from Quantum Physics to Logic, but unlike Non-Euclidean Geometry and General Relativity, such Quantum Logic as a logical model has not provided any more explanatory value to science (Curd and Cover 380). It is on the grounds of logic that many scientists and philosophers have rejected the Copenhagen interpretation of Quantum Physics, and consider the possibility of another quantum theory we have not yet formulated.

III. The Second Quine-Putnam Thesis: The Indispensability Argument

The Second Quine-Putnam Thesis is that mathematics is meaningful only because it is indispensable to science, and that if it was not indispensable to science, mathematics would have no reason to be. This seems to follow from the First Quine-Putnam Thesis, that somehow mathematics and logic are revised in light of recalcitrant experience. Even though we have refuted this at length, I wish to point to some strange consequences of the indispensability argument.

Rosado Haddock says that if mathematics is subordinated to Physics, it is strange that mathematics does not refer to physical entities or theories of any kind. In fact, it seems that mathematics, most of the time, is self-evident and true in any possible world, while Physics is not.

Now, although applicable to the physical (and other) sciences, mathematical theorems seem to be true even if all actually accepted physical theories were false and, thus, the claim that only after the advent of modern physical science can we argue that mathematical theorems are true seems really amazing, to say the least. It is also extremely unreasonable to think that before the advent of modern physical science there was no way to establish the existence of mathematical entities, thus, e.g., that there exists an immediate successor of 3 in the natural numbers series. Moreover, it is perfectly conceivable that there exists a world in which all mathematical theorems known to present-day mathematicians are true (supposing that current mathematics is consistent), and that mathematicians know as much
as they actually know, but in which none of the physical laws accepted as true nowadays were known to humanity. What is not possible is a world in which physical science were as developed as it actually is, but in which our present mathematical theories (especially those applicable to present-day physical science) were not valid, or, at least, were not considered to be valid (Rosado 269).

Jerrold Katz also makes his criticisms along this line, that we can establish the existence of those mathematical entities even without empirical science (Katz 50-51). So, can we really remain with a straight face when we say that the validity of mathematics depends on scientific theories? As we have shown, it seems the other way around. Mathematics and logic provide the theoretical basis and models for science to be able to formulate theories about the natural world. There are in every sense *a priori*, prior to any knowledge, they are the condition of possibility for any science about the world.

IV. Conclusions

This article centers around the true relationship between formal *a priori* sciences such as logic and mathematics with natural sciences such as Physics. These three disciplines are independent of each other, but despite this, they all have decisive impact on each other. Logic is a sister discipline with mathematics, both formal science together are the basis of all formal investigations in mathematics, such as set theory, model theory, among other fields. The mathematical and logical truths discovered in these *a priori* sciences constitute the basis on which we build scientific theories. Physics provides the clearest example of how this occurs, how we assign as variables physical notions and we can discover new relations among those notions using mathematical properties.

I cannot express enough the independence between the fields of formal science and natural science, but we cannot stress enough also the dependency of the latter on the former. Logic and mathematics are their own fields, have their own investigations, and their ways of proceeding are completely different from those of natural science. These *a priori* fields do not need the authority of experience for them to be true. And natural science proceeds in a very different way, because each theory, law and hypothesis does require the authority of sensible experience. None of these disciplines can be reduced in terms of importance to the other. They are all important, and they all provide the basis for our knowledge about the world.

Contrary to the Quine of “Two Dogmas”, even from a pragmatic standpoint the recognition of the distinction between analytic judgments (which comprises an analytic field) and synthetic judgments (the building blocks of natural science) is useful. Not to establish this distinction, leads to a lack of understanding of the nature of both formal science and natural science.
Endnotes

1Jerrold Katz uses the “Quine-Putnam Thesis” phrase (Katz 49-50), however, we will split in two these arguments to examine them more thoroughly.

2Jerrold Katz has elaborated an excellent extensive analysis of these empiricist and physicalist problems in his book *Realistic Rationalism*

Works Cited

